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Integrals of products of Airy functions 
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Abstract. A large number of indefinite integrals of the form ~ x " y l y 2 d x  have been 
evaluated in terms of x,  y l ,  y2 and their first derivatives; y1 and y2 are both solutions of the 
differential equation y" = xy. Some of these integrals can be applied to the quantum 
mechanical problem of a particle in a uniform field of force. 

1. Introduction 

Airy functions have been a part of mathematical physics for many years. They may be 
defined as solutions of the differential equation 

y " = x y  (1) 

y = cuAi(x)  +pBi(x). (2) 

for which it is convenient to write the general solution in the form 

In this solution (Y and /3 are arbitrary constants; A i ( x )  and Bi(x) are Airy functions, 
chosen conventionally such that A i ( x )  has the property 

lim A i ( x ) = O  
X'CU 

(3) 

with Bi(x) being unbounded in this limit. In this paper we shall use y to designate any 
linear combination of solutions to (1). 

The quantum mechanical problem of a particle in a uniform field of force is 
described by the Schrodinger equation, which in this case can be readily transformed 
into (1). Thus Airy functions are effectively the wavefunctions for this problem. The 
uniform force field has been considered for continuum states (Breit 1928, Mott and 
Sneddon 1948) and for bound states (Gibbs 1975). In none of these treatments is the 
normalization of the wavefunction dealt with. For the bound states the normalization 
requires the integration of the wavefunction over the interval (x,,, CO) where xA is one of 
the zeros of the Airy function. The evaluation of such normalization integrals was the 
problem that led to this work. 

If one searches through the usual collections of integrals of transcendental functions 
(Abramowitz and Stegun 1965, Gradshteyn and Ryzhik 1965, Luke 1962) one finds 
formulae for integrals of Ai and Bi but not for Ai2, AiBi or Bi2. Similarly a search 
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y 2  y ' y  yI2 xy2 xy'y xy'2 x 2 y 2  x2y'y x2y'2 

DY * 2 
DY 'Y  1 1  
Dy'2 2 

Dxy2 1 2 
DXY 'Y 1 1 1  
Dxyf2 1 2 

D x 2 y 2  2 2 
Dx'y'y 2 
D x Z y f 2  2 

through standard references on the. properties of such functions (Jeffreys and Jeffreys 
1946, Watson 1922) offers no help toward integration of such products. 

It is the purpose of this paper to show how these integrals may be performed, with 
results expressed in terms of functions that are already tabulated. 

x 3 y 2  x3y 'y  

1 1  
2 

2. Methods 

We shall be concerned with indefinite integrals of the forms 

xny2  dx 

x"y'y dx 

xnyr2  dx 

(4) 

where n = 0, 1 ,2 ,3 ,  . . . . Since numerical tables of A i ( x ) ,  Ai'(x), Bi(x) and Bi'(x) are 
readily available (Abramowitz and Stegun 1965, Miller 1971), we shall consider that a 
form of the indefinite integral will be acceptable if it can be expressed in terms of x ,  y 
and y'. To see how this can be done it is useful to examine table 1, in which derivatives 
of (4), (5) and (6) are systematically displayed. In the construction of table 1 it is 
essential to make use of (1) to substitute x y  for y" every time the latter appears. 

The property of table 1 that renders tractable the integrations in question is that one 
can find sets of rows for which the elements appear only in small numbers of columns for 
which the integrals are not already known. There are two trivial examples of this, the 
rows labelled Dy2  and D Y ' ~ .  A more instructive example is the set with Dyt2 and Dxyt2.  
By subtracting these two rows one obtains the equation 

D(xy2 - Y ' ~ )  = y 2  (7) 
which is exactly what is wanted for the normalization integral. 
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The rows corresponding to Dy'y, Dxy" and Dx2yZ form another such set, with the 
equation 

D [ i $ ] = [ l  1 1 0  0 211 

x2y2 0 2 2 x2y'y 

Inversion of the 3 x 3 matrix yields 

from which it is an easy matter to read off three expressions for integrals of products of 
Airy functions. 

General recursion formulae for arbitrary n can be obtained in this way, since 

nx "-l y ' y 1 
(10) 

This set can be solved, since in principle the quantity 

is already known. The results of the solution of this set of equations are in the appendix. 
A simpler form for 

I =  x"y'y dx (11) I 
is available from integration by parts, since 

I = xny2- nx"-'y dx - I  I 
(12) 

Results can also be derived for integrals of the form 

I x " w 2  dx I X"Y ;YZ dx I x"yiy; dx 

where y l  and y 2  are any two solutions of (1). The first of these can be evaluated by 
writing the identity 

Each of the integrals on the right-hand side can be evaluated by using (A.12), and the 
result is displayed in (A.22). 

The third expression in (13) is evaluated in a way that is entirely analogous to that 
just used. 
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To evaluate the second expression in (13) it is helpful to use the Wronskian 
determinant: 

w =  Y l Y ;  - Y  ;y2. (15) 

Since y1 and y2 are solutions to (1) it follows that W ' =  0, the Wronskian is constant. 
Next one writes two equations 

Adding (16) and (1 7) yields 

2 x"y;y2 dx = x"D(yly2) dx - (n  + l ) - l~nc l  W. I I 
The first term on the right-hand side can be integrated by parts; the result is (A.24). 

3. Results and conclusions 

The results are collected in the appendix. Like most results in integral calculus, they are 
easier to check than to obtain. Since the results involving y1y2 were derived without 
regard to which solutions of (1) are intended, they are therefore more general than 
those involving y2; the latter can be derived readily from the former. 

An outcome of these formulae is that the wavefunction for a particle in a uniform 
force field can have its normalization constant expressed in terms of tabulated quan- 
tities. Further, since the integrals are indefinite, it is possible to calculate probabilities 
of measurement of the position of the particle for any desired interval. Also, diagonal 
matrix elements of position, of momentum or combinations of both can readily be 
obtained. Unfortunately the method used here is not suited for the calculation of 
off -diagonal elements, since the matrix of derivatives cannot be partitioned in the way it 
was done here. 

Appendix 

Integrals of products of Airy functions are collected here; y refers to any linear 
combination of A i ( x )  and Bi(x); n is a positive integer. 

I y2dx =xy2-yT2 (A.1) 

J y'y dx =3y2 

y'2dx =3(2y'y+xyf2-x2y2) I 
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I xy’y dx = t y”  

/ ~ y ’ ~ d x = f [ 3 ( x y ~ y - f y ~ ) + x  2 y r 2 -  x 3 y 2 1 

x2y2  dx = f [ 2 ( x y r y  -$y2)-x2y’2+x3y2] 

x2y’y dx = & x 2 y 2 - 2 y r y f 2 x y r 2 )  

3 ’2- 4 2 J ~ ~ y ’ ~ d x  =+(4x2y’y - 4 ~ ’ ~ + x  y x y ) 

/ x 3 y 2  dx = $ ( 3 ~ ~ y ’ y - 3 y ’ ~ - x ~ y ’ ~ + x ~ y ’ )  

3 2  3 2 ’ 2  / x3y’y dx =;(-3xy‘y + z y  +zx y + x 3 y 2 )  

j x“y’y dx =;(+I j xn-ly2 dx) 

/ ~ “ y ’ y d x = - [ - ~ n ( n - I ) ( x “ - ~ y ’ y - ( n - 2 ) / x ~ - ~ y ’ y  1 d x )  
2 n - 1  

+tnxfl-’yr2++(n - 1)x“y2 1 
2n + 3  [(n + 2 )  (x”y’y -n I xn-ly’y d x )  + ~ ” + ‘ y ~ ~ - x ~ + ~ y ~ ]  

yly2dx = X Y I Y Z - Y ; Y ;  

X Y I Y 2  d.x = &Y :y2 + y 2 y ;  -2XY ; y  ;+2X2YlY2) 
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(A.4) 

(A.5) 

(A.@ 

(44.7) 

(A.8) 

(A.9) 

(A. 10) 

(A. 11) 

(A.12) 

(A.13)  

(A. 14) 

(A. 15) 

(A. 16) 

(A. 17) 

(A.18) 

(A. 19) 
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2 ' 1  j XY ;y 4 dx = 4&XY ;y2 + XY 1 Y  i - Y l Y 2 )  + x Y 1 Y  2 - X 3 Y l Y 2 l  

+2x"+'yly2-n(n - 1) x"-2(yiy2+yly4) dx) 

(A.20) 

(A.21) 

(A.22) 

J X n Y l Y 2  dx =:(x"-1(Y:Yz+Y1Y:)-(n - 1) J xn-2(Y;Y2+YlY:) dx 

-2 I x"-'y;yb dx), n 3 1 (A.23) 

+2X"+'(Y ;Y;-xYlY2)]* (A.25) 

Integrals (A.16) through (A.25) are true for y1 and y2 being any solutions of (1). If 
y l  = Ai(x) and y2 = Bi(x) using the customary definitions (Abramowitz and Stegun 
1965, Miller 1971) some of the integrals can be simplified by means of the Wronskian 
relation 

&Bi'-Ai'Bi=T-' 

For example, 

1 Ai' Bi dx = :(Ai Bi - x / ~ ) .  

(A.20) and (A.24) can both be simplified in this way. 

(A. 1 7 4  
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